574 research outputs found

    Validation of the KC autotuning principle on a multi-tank pilot process

    Get PDF
    PIDs are the most widely used controllers in industrial applications. This particular interest generates on-going research regarding simplified tuning methods appealing to the industrial user. Such methods refer also to a fast design of PID controllers in the absence of a mathematical model of the process. Autotuners represent one way of achieving such a fast design. In this paper, the experimental validation of a previously presented direct autotuner is presented. The autotuning method requires only one simple sine test on the process to compute the PID controller parameters. The case study consists in the Quanser Six Tanks Process. Comparisons with other popular tuning methods are also presented. The results show that the proposed autotuning method is a valuable option for controlling industrial processes

    The annals of 'Dunarea de Jos' University of Galati

    No full text

    Model based control strategies for a class of nonlinear mechanical sub-systems

    Get PDF
    This paper presents a comparison between various control strategies for a class of mechanical actuators common in heavy-duty industry. Typical actuator components are hydraulic or pneumatic elements with static non-linearities, which are commonly referred to as Hammerstein systems. Such static non-linearities may vary in time as a function of the load and hence classical inverse-model based control strategies may deliver sub-optimal performance. This paper investigates the ability of advanced model based control strategies to satisfy a tolerance interval for position error values, overshoot and settling time specifications. Due to the presence of static non-linearity requiring changing direction of movement, control effort is also evaluated in terms of zero crossing frequency (up-down or left-right movement). Simulation and experimental data from a lab setup suggest that sliding mode control is able to improve global performance parameters

    A no-nonsense control engineering approach to anaesthesia control during induction phase

    Get PDF

    On the potential of using fractional-order systems to model the respiratory impedance

    Get PDF
    This contribution provides an analysis of the human respiratory system in frequency domain by means of estimating the respiratory impedance. Further on, analysis of several models for human respiratory impedance is done, leading to the conclusion that a fractional model gives a better description of the impedance than the classical theory of integer-order systems. A mathematical analysis follows, starting from the conclusions obtained heuristically. Correlation to the physiological characteristics of the respiratory system is discussed

    Some frequency domain considerations upon human respiratory mechanics

    Get PDF
    The aim of this paper is to present a brief analysis of recent results considering human respiratory mechanics. The final purpose of the investigation is to provide a fast method for identification of airway mechanics, in order to assist the medical staff in obtaining a diagnosis of the patient within the context of performing routine evaluation of the respiratory function. Considerations are made with respect to the future potential of the method as a screening technique on a large number of populations
    • …
    corecore